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Abstract. Glaucoma is a notable public health concern as it 
can lead to irreversible vision loss; however, it remains chal‑
lenging to treat effectively. Current options focus solely on 
managing intraocular pressure (IOP) to delay the progression 
of vision loss. The present review describes the multifaceted 
mechanisms of glaucoma and concludes by describing future 
promising treatment options that target specific mechanisms. 
Gene editing therapy is a promising option for patients with 
mutations known to cause glaucoma. Modulating the expres‑
sion of genes involved in IOP regulation or neurodegeneration 
is another potential approach. Additionally, therapies targeting 
relevant molecular and metabolic pathways are also currently 
under investigation. The present review aims to highlight 
the most promising avenues for molecular intervention in 
glaucoma and guide future research efforts toward effective, 
long‑term solutions for preserving vision.

Contents

1. Introduction
2. Mechanisms of glaucoma
3. New applications of molecular therapy in glaucoma
4. Conclusions and future directions

1. Introduction

Glaucoma is a group of progressive optic neuropathies char‑
acterized by retinal ganglion cell (RGC) loss and optic nerve 
damage that can lead to irreversible blindness (1,2). Estimates 
indicate that glaucoma is responsible for ~3.6 million cases of 
blindness among individuals aged ≥50 years (3). As the global 
population ages, the prevalence of glaucoma is expected to 
keep increasing. Therefore, research into this disease is of 
great significance for public health management and may have 
a profound socioeconomic impact.

Despite notable advances in medical and surgical treat‑
ments, ~12.5% of glaucomatous eyes will show fast vision loss 
and ~14.3% of patients with glaucoma will be blind in one 
eye within 20 years (4). The estimates highlight the need for 
novel and more effective treatments. Molecular biomarkers 
have been widely studied in glaucoma research  (5), and 
molecular therapy could be a promising new approach (6). 
Recent advances in gene therapy, RNA interference (RNAi), 
cell‑based strategies and small‑molecule inhibitors have 
demonstrated marked preclinical success in animal models of 
glaucoma (5,6).

The present review provides a comprehensive overview 
of the current research progress on molecular therapies for 
glaucoma, encompassing the multifactorial mechanisms of 
glaucoma, emerging molecular treatment strategies and future 
directions.

2. Mechanisms of glaucoma

Classical pathological mechanisms. The central patho‑
logical mechanism of glaucoma is trabecular meshwork (TM) 
dysfunction and increased intraocular pressure (IOP), which 
exert stress on the retina and neurons, progressively leading to 
vision loss (5). The TM regulates IOP by facilitating aqueous 
humor outflow and its dysfunction increases outflow resistance, 
leading to IOP elevation (5). Beyond IOP and translaminar 
pressure gradients, anatomical features of the optic nerve head, 
including the optic disc size and lamina cribrosa morphology, 
serve an important role in glaucoma (7). Larger discs are more 
susceptible to lamina cribrosa displacement under pressure 
gradients, which has been associated with impaired hemody‑
namics and reduced oxygen availability (7,8). Furthermore, 
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vascular dysregulation may lead to chronic vasoconstriction, 
restricting nutrient and oxygen delivery to the retina and 
thereby contributing to glaucomatous damage (9).

Nevertheless, optic nerve degeneration at the optic nerve 
head has been reported to precede RGC injury, suggesting 
a window of therapeutic opportunity before actual RGC 
damage (10). Thus, by identifying and targeting these early 
molecular mechanisms, it may be possible to intervene before 
irreversible damage to the RGCs occurs, which could markedly 
improve the prognosis for patients with glaucoma.

Metabolic pathways and cell death. Oxidative stress can 
directly damage the TM and impair aqueous humor outflow, 
leading to increased IOP; it also activates the RGCs, triggering 
inflammatory mediators that worsen damage and oxidative 
stress (11). Furthermore, both external and mitochondrial reac‑
tive oxygen species (ROS) can harm mitochondria, creating 
a cycle of increasing ROS, lower energy production and 
increased cell damage (11,12). Oxidative stress also triggers 
endoplasmic reticulum stress and DNA damage, both of which 
can harm RGCs (12,13).

A recent Mendelian randomization study highlighted 
the bidirectional causal effects of oxidative stress and glau‑
coma (14), supporting the view of a self‑sustained vicious 
circle. Systemic biomarkers of oxidative stress such as total 
antioxidant capacity are elevated in patients with elevated 
IOP  (15). Notably, oxidative stress is a complex condi‑
tion that also involves exogenous factors; results from the 
large‑scale National Health and Nutrition Examination Survey 
(NHANES) study indicated that elevated oxidative balance 
scores (calculated based on nutritional and lifestyle factors) 
were associated with glaucoma (16). Physical activity may have 
favorable impacts on glaucoma progression through decreased 
oxidative stress (17). Therefore, these results highlight the 
importance of oxidative stress in glaucoma pathogenesis and 
pathophysiology.

Mitochondrial abnormalities serve a critical role in the 
pathogenesis of primary open angle glaucoma (POAG), 
particularly through their involvement in ROS production, 
energy metabolism and cell survival  (18). Elevated IOP, 
aging, neuroinflammation, vascular impairment, neuro‑
trophic factor deprivation and oxidative stress collectively 
disrupt the delicate balance of mitochondrial fission and 
fusion (18). This imbalance leads to reduced mitochondrial 
efficiency, increased ROS production and compromised 
cellular energy supply, all of which exacerbate RGC 
damage (18).

Inflammation, closely associated with oxidative stress and 
mitochondrial dysfunction, is a central process in increased 
IOP and glaucoma  (19,20). Intermediate inflammation (or 
para‑inflammation) is an adaptive process that involves 
stresses and malfunctions in the retina and is involved in 
preserving tissue homeostasis and function. However, it 
may be deleterious if sustained over long periods (20). Such 
inflammation could contribute to impaired aqueous outflow 
and increased IOP (21). C‑reactive protein is a biomarker of 
systemic low‑grade inflammation and has been associated with 
glaucoma in a recent meta‑analysis (22). Another NHANES 
analysis linked the systemic inflammatory response index 
with the incidence of glaucoma (23).

Furthermore, RGC injury leads to RGC death (24). As 
RGCs cannot regenerate and reconnect to the visual pathway, 
their death will lead to progressive vision loss  (24,25). 
Notably, recent research identified that different subtypes of 
RGCs have different vulnerability levels in the pathogenesis 
of glaucoma, which could have implications for glaucoma 
management  (25). Historically, apoptosis was considered 
the most important RGC death mechanism, but focusing on 
apoptosis led to disappointing results as saving RGCs through 
caspase inhibition still ultimately leads to cell death through 
mitochondrial dysfunction (26).

Ferroptosis is a recently identified iron‑dependent 
programmed cell death triggered by lipid peroxidation and 
relying on iron‑generated ROS, and it is involved in RGC 
death (27,28). Ferroptosis induction is associated with higher 
blood iron (which is associated with a higher risk of glaucoma), 
excitotoxicity, neuroinflammation, ischemia/reperfusion 
injury and a pathologically high IOP, which also all participate 
in glaucoma (24,29). Pyroptosis is another programmed cell 
death path involved in glaucoma RGC death; however, the exact 
mechanism remains elusive (24). Under high IOP, the glial 
cells are activated and their recruitment, except for the RGCs, 
precedes RGC death. Glial cells participate in inflammation, 
and pyroptosis is associated with inflammation (24).

Molecular pathways. Mitochondrial fission, fusion and func‑
tion depend on proteins such as optic atrophy protein 1 (OPA1), 
dynamin‑related protein 1 (DRP1), A‑kinase anchoring protein 
1 (AKAP1) and nicotinamide nucleotide adenylyltransferase 
1 (NMNAT1). OPA1 mutations can cause optic neuropathies, 
and single nucleotide polymorphisms in OPA1 have been asso‑
ciated with POAG and normal tension glaucoma (30). Acute 
high IOP raises DRP1 levels, leading to early neurodegenera‑
tive events, increased gliosis and RGC apoptosis (31). AKAP1 
expression appears decreased or lost in glaucoma, suggesting 
its role in RGC injury and death (31). NMNAT1 is involved 
in NAD+ synthesis, mitigating mitochondrial dysfunction 
and related diseases (32). Decreased NAD+ levels have been 
associated with glaucoma and retina survival depends upon 
adequate NAD+ (33).

Mutations in several genes increase the susceptibility 
to glaucoma. Myocilin (MYOC) is a protein involved in the 
formation and maintenance of the TM, a structure involved 
in aqueous humor drainage. Mutations in the MYOC gene 
are associated with protein misfolding and dysfunctional TM 
and account for ~5% of POAG cases (34). Mutations in the 
cytochrome P450 family 1 subfamily B member 1 (CYP1B1) 
gene are responsible for ~20% of the cases of childhood 
glaucoma in Japan (35) and are associated with congenital 
glaucoma (36). The forkhead box C1 (FOXC1) gene encodes 
a transcription factor, and mutations in FOXC1 lead to ocular 
drainage dysfunction (35). Optineurin (OPTN) is an adapter 
protein involved in several metabolic processes. Mutations in 
the OPTN gene are connected to neurodegenerative disorders 
and glaucoma (37,38). Recent studies have also implicated the 
mutations in ataxin 2 (associated with reduced RGC survival 
and elevated IOP) (39), EGF containing fibulin extracellular 
matrix protein 1 (linked to juvenile or adult‑onset hereditary 
isolated glaucoma) (40) and paired box 6 (critical for prenatal 
ocular development, leading to secondary glaucoma)  (41). 
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Therefore, the large number of genes associated with glaucoma 
illustrate the complexity of the disease.

Besides mutations in specific genes, Moazzeni et al (42) 
identified 18 transcription factors, 195 microRNAs (miRNAs/
miRs), 106 long non‑coding RNAs and two circular RNAs 
as being involved in glaucoma pathogenesis, highlighting the 
multifaceted pathophysiology of glaucoma. A proteomic study 
identified 176 dysregulated proteins in cells and 7 in extra‑
cellular vesicles, suggesting numerous potential glaucoma 
biomarkers (43). A metabolomic study reported that patients 
with POAG displayed decreased levels of phenylalanine, 
phenylacetate, leucine, N‑acetylated compounds, formic acid 
and uridine in their tears, and increased taurine, glycine, urea, 
glucose and unsaturated fatty acids, allowing the non‑invasive 
detection of POAG with 100% sensitivity and 83% speci‑
ficity (44). Exosome density and aqueous humor programmed 
death‑ligand 1 levels can also provide information about 
retinal damage in patients with glaucoma (45).

In conclusion, mitochondria‑associated proteins regulate 
mitochondrial function through complex interactions, and 
their dysregulation is closely associated with optic neuropa‑
thies, including glaucoma. Several gene mutations increase 
the susceptibility to glaucoma by affecting the function of 
the TM, metabolic processes and ocular drainage structures, 
highlighting the complexity of this disease and its therapeutic 
challenges. Multiple molecules, including transcription factors, 
non‑coding RNAs, dysfunctional proteins and metabolites, 
are involved in the pathogenesis of glaucoma. These may 
collectively provide potential biomarkers and non‑invasive 
testing methods for the diagnosis, prognosis and treatment 
of glaucoma.

3. New applications of molecular therapy in glaucoma

An improved understanding of the classical, metabolic and 
molecular factors involved in glaucoma may help to elucidate 
several potential treatment targets, several of which are already 
in the preclinical stages and appear promising.

Gene therapy in glaucoma. Mutations in several genes are 
involved in the pathogenesis of glaucoma, including MYOC, 
CYP1B1, FOXC1 and OPTN, among others. Although 
certain treatments can be effective in certain patients with 
gene mutation‑related glaucoma, the only possible curative 
option is the correction of the mutated allele(s) using gene 
therapy (46). Several studies have assessed different methods 
for editing several genes involved in glaucoma (Table I). For 
instance, gene editing targeting MYOC mutations can reduce 
endoplasmic reticulum stress caused by the accumulation of 
misfolded MYOC and restore the MYOC protein function 
in the TM, leading to reduced IOP in animal models (47‑49). 
Introducing viral vectors that express a functional protein can 
also be used instead of gene editing, and such an option is 
being explored for the OPTN gene as OPTN is involved in 
~19% of POAG cases (50). Nevertheless, nerve regeneration 
using gene therapy is an intense area of research, and it could 
ultimately be used to regenerate RGCs  (51). Aquaporin 1 
(AQP1) is involved in aqueous humor production and targeting 
AQP1 decreases aqueous humor production and IOP  (52). 
Elevated transforming growth factor β 2 (TGFβ2) expression 

is associated with pathological changes in the TM, and POAG 
shows elevated TGFβ2 expression  (53). Interfering with 
TGFβ2 expression using CRISPR technology could be used to 
manage POAG (54). Additionally, suppressing the phosphatase 
and tensin homolog (PTEN) gene also appears neuroprotec‑
tive in RGCs  (55). Therefore, gene editing could also be 
used to improve surgical outcomes. Lee et al (56) reported 
that targeting the connective tissue growth factor gene using 
CRISPR technology could reduce fibrosis after glaucoma 
filtration surgery. Moreover, a recent study reported that the 
disruption of the AQP1/β2 adrenergic receptor/rho‑associated 
protein kinase 1/rho‑associated protein kinase 2 genes using 
CRISPR‑CasRx technology reduced IOP and RGC damage in 
mice (57). Therefore, these genes may be targeted to improve 
glaucoma outcomes.

Gene therapy can also modulate beneficial or harmful 
protein production in glaucoma; however, its success is 
limited, potentially due to the complex genetic basis of 
the disease (46). Nevertheless, the expression of several 
therapeutic genes have been explored (Table I), including 
brain‑derived neurotrophic factor (BDNF) (58‑61), tropomy‑
osin‑related kinase receptor‑B (TrkB) (58,61), brain‑specific 
homeobox/POU domain protein 3b (Brn3b) (62,63), B‑cell 
lymphoma‑xl (Bcl‑xl)  (64), Myc‑associated protein X 
(MAX)  (65), neuroprotective intracellular transcription 
factor 2 (Nrf2) (60), superoxide dismutase 2 (SOD2) (66), 
ATP‑binding cassette A1 (67), C3 (68), mouse γ‑synuclein 
(mSncg)  (69), K‑Ras  (70) and matrix metalloproteinase‑3 
(MMP‑3) (71). The proposed therapies target mechanisms 
such as neuroprotection (BDNF, TrkB, MAX, Nrf2, C3, K‑Ras 
and mSncg), apoptosis (Brn3b, Bcl‑xl and ATP‑binding 
cassette A1), oxidative stress (SOD2) and aqueous humor 
outflow (MMP‑3). Although several genes can be theoreti‑
cally modulated to influence IOP and glaucoma progression, 
compensatory mechanisms from other genes are often 
observed, and adverse effects of modulating genes must 
be avoided (46). However, several companies are exploring 
the use of genes involved in IOP and RGC neuroprotection 
as drugs (72). NADH‑quinone oxidoreductase‑based gene 
therapy can improve mitochondrial function and reduce 
oxidative stress (73). Additionally, CRISPR/Cas technology 
can be used to disrupt genes related to high IOP. For example, 
AQP1 is involved in aqueous humor production, and its 
disruption decreases IOP (47,51). Such a disruptive approach 
could also be used for TGFβ2, which is elevated in ~50% of 
patients with POAG, and participates in extracellular matrix 
(ECM) remodeling and elevated IOP (46,54). Caveolin‑1 also 
serves a role in the response of RGCs to increased IOP, and 
ablating caveolin‑1 in animal models has been reported to 
improve the glaucoma phenotype (74).

RNAi techniques. An alternative to gene editing or introducing 
a novel copy of a gene is RNAi, which works by interfering 
with the mRNA of the target gene, offering a non‑permanent 
regulatory approach. Small interfering RNAs (siRNAs) can be 
delivered using vesicles, and their effect is transient. Although 
it can necessitate repeated injections, this method avoids the 
ethical and safety issues associated with manipulating the 
genome of an individual. Furthermore, siRNAs can be deliv‑
ered locally (such as in the aqueous humor) to perform their 
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effect in a limited area, such as the retina (75,76). RNAi tech‑
nology is excellent for short‑term or local treatments due to 
its reversibility and suitability for local applications (75). This 
allows the selection of the most appropriate strategy based on 
the specific pathological mechanisms and treatment needs of 

glaucoma, thereby maximizing treatment effectiveness while 
minimizing potential risks (76).

Stem cell therapy. Stem cells, particularly mesenchymal 
stem cells (MSCs), induced pluripotent stem cells (iPSCs), 

Table I. Summary of the molecular targeting therapies for glaucoma.

	 Gene, protein or			 
Category	 biomarker	E xperimental model	 Molecular mechanism	 (Refs.)

Gene editing	 MYOC	 Mice and an ex vivo	 Knockdown the expression of	 (48)
	 	 human organ culture 	 mutant MYOC and relieves 	
	 	 system	ER  stress	
Gene editing	 MYOC	 Mice	 Knockdown the expression of 	 (49)
	 	 	 mutant MYOC and relieves 	
	 	 	ER  stress	
Gene editing	 PTEN	 Human RGCs	 Neuroprotection	 (55)
Therapeutic gene expression	 BDNF and TrkB	 Mice and rats	 Neuroprotection	 (58)
Therapeutic gene expression	 BDNF and TrkB	 Mice	N europrotection	 (48)
Therapeutic gene expression	 BDNF	 Rats	 Neuroprotection	 (59)
Therapeutic gene expression	 Brnb3	 Rats	A nti‑apoptosis and	 (62,63)
	 	 	 neuroprotection	
Therapeutic gene expression	 Bcl‑xl	 Mice	A nti‑apoptosis and	 (64)
	 	 	 neuroprotection	
Therapeutic gene expression	 MAX	 Rats	 Neuroprotection	 (65)
Therapeutic gene expression	 Nrf2 and BDNF	 Mice	N europrotection	 (60)
Therapeutic gene expression	 SOD2	 Rats	A ntioxidative	 (66)
Therapeutic gene expression	 ABCA1	 Mice	A nti‑apoptosis	 (67)
Therapeutic gene expression	 C3	 Rats	N europrotection	 (68)
Gene editing	 Aquaporin 1	 Mice	 Aqueous humor production	 (52)
Therapeutic gene expression	 MMP‑3	 Mice	 Aqueous humor outflow	 (71)
Therapeutic gene expression	 mSncg	 Mammalian RGCs	 Neuroprotection	 (69)
Gene editing	 TGFβ2	 Mice and human cells	 Trabecular mesh	 (54)
Therapeutic gene expression	 K‑Ras	 Human RGCs	N europrotection	 (70)
RNA interference	 Aqp1/Adrb2/	 Mice	 Aqueous humor production	 (57)
	 Rock1/Rock2	 	 and outflow	
Potential novel biomarker	AC TA2	 Humans (proteomics)	 ‑	 (43)
Potential novel biomarker	 MAGI1	 Humans (proteomics)	 ‑	 (43)
Potential novel biomarker	 GCOM1	 Humans (proteomics)	 ‑	 (43)
Potential novel biomarker	 RAD23B	 Humans (proteomics)	 ‑	 (43)
Potential novel biomarker	 Tear taurine	 Humans (metabolomics)	 ‑	 (44)
Potential novel biomarker	 Tear glycine	 Humans (metabolomics)	 ‑	 (44)
Potential novel biomarker	 Tear urea	 Humans (metabolomics)	 ‑	 (44)
Potential novel biomarker	 Tear glucose	 Humans (metabolomics)	 ‑	 (44)
Potential novel biomarker	 Tear unsaturated 	 Humans (metabolomics)	 ‑	 (44)
	 fatty acids			 
Potential novel biomarker	 High exosome	 Humans	 ‑	 (45)
	 density			 

MYOC, myocilin; ER, endoplasmic reticulum; PTEN, phosphatase and tensin homolog; RGCs, retinal ganglion cells; BDNF, brain‑derived 
neurotrophic factor; TrkB, tropomyosin‑related kinase receptor‑B; Brn3b, brain‑specific homeobox/POU domain protein 3b; Bcl‑xl, B‑cell 
lymphoma‑xl; MAX, Myc‑associated protein X; Nrf2, neuroprotective intracellular transcription factor 2; SOD2, superoxide dismutase 2; 
ABCA1, ATP‑binding cassette A1; MMP‑3, matrix metalloproteinase‑3; mSncg, mouse γ‑synuclein; TGFβ2, transforming growth factor β2; 
Aqp1/Adrb2/Rock1/Rock2, aquaporin 1/β2 adrenergic receptor/rho‑associated protein kinase 1/rho‑associated protein kinase 2; ACTA2, actin 
α2; GCOM1, GRINL1 complex 1.
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embryonic stem cells (ESCs) and retinal progenitor cells, offer 
the potential to restore damaged tissue and replace lost or 
dysfunctional cells (77). Restoring TM function and regener‑
ating damaged RGCs are key goals in glaucoma treatment (77).

Restoring TM function. Restoration of TM cellularity and 
function could repopulate the outflow pathway, re‑establish 
physiological aqueous humor drainage and durable IOP 
control. Native TM stem cells (TMSCs), iPSC‑derived TM 
cells (iPSC‑TMs) and MSCs have been investigated for TM 
regeneration, each with distinct advantages and transla‑
tional profiles (78‑80). Human TMSCs can be isolated from 
donor TM tissue and display label‑retaining, slow‑cycling 
properties, multipotency and the capacity to home specifi‑
cally to TM tissue after intracameral delivery  (78,80). In 
preclinical mouse models, intracameral injection of expanded 
human TMSCs resulted in TM engraftment without notable 
inflammation and the appearance of TM marker expression 
within days, suggesting in  situ differentiation and niche 
restoration (78,81). Complementary work has reported that 
transplanted iPSC‑TMs not only survive in perfused human 
anterior segments and animal models, but also stimulate 
proliferation of endogenous TM cells, increase TM cellularity 
and improve outflow facility (79,82). These findings support a 
model in which exogenous cells can both directly replace lost 
TM cells and act via paracrine or contact‑dependent cues to 
recruit endogenous progenitors.

Several groups have extended these approaches to disease 
models and shown functional benefit. For instance, in mouse 
glaucoma models, intracameral transplantation of TMSCs 
or iPSC‑TMs decreased IOP and restored outflow facility, 
whereas adipose‑derived stem cells and MSCs improved TM 
cellularity and ECM turnover, leading to partial normaliza‑
tion of IOP (80,81). Mechanistically, cell therapies act via 
the following: i) Direct replacement of TM endothelial‑like 
cells; ii) secretion of matrix‑remodeling enzymes and trophic 
factors that normalize ECM deposition; and iii) activation 
of endogenous TM progenitor proliferation (78‑82). Notably, 
in certain studies only a small fraction of transplanted cells 
persisted long‑term; nevertheless, the therapeutic effect has 
often been associated with increased proliferation of resident 
TM cells, pointing to an important inductive or paracrine role 
for the graft (79,82).

Despite robust preclinical progress, key translational 
challenges remain. These include the following: Ensuring 
the tolerability and safety of intracameral cell delivery 
(avoiding inf lammation, angle obstruction or aberrant 
neovascularization); defining optimal cell sources and differ‑
entiation protocols to yield stable TM phenotypes; scaling 
good manufacturing practice (GMP)‑compliant manufac‑
turing; and establishing long‑term functional endpoints in 
large‑animal models and human ex‑vivo perfusion systems 
prior to first‑in‑human studies (81). In addition, TM regional 
heterogeneity and disease‑associated niche alteration (such 
as in POAG eyes with pronounced ECM remodeling) may 
require combinatorial strategies (pairing cell replacement 
with ECM‑modulating enzymes or gene‑editing of resident 
cells) to achieve durable restoration (78‑82). In summary, 
stem‑cell based TM regeneration has advanced to compel‑
ling preclinical proof‑of‑concept and the next translational 
steps (standardized manufacturing, safety testing in large 

animals and controlled early clinical trials) are now tractable 
priorities for the field.

Regenerating damaged RGCs. Stem cell‑based approaches 
for regenerated damaged RGCs target two complementary 
therapeutic goals: i) Neuroprotection of surviving RGCs and 
their axons; and ii) replacement or repopulation of lost RGCs 
to restore visual function (83). Several cell types have been 
investigated preclinically, including MSCs, ESCs, neural 
progenitor cells and iPSC‑derived retinal ganglion‑like cells 
(iPSC‑RGCs) (83‑87). The therapeutic actions of transplanted 
cells are multifactorial and include paracrine secretion of 
neurotrophic factors (such as BDNF and ciliary neurotrophic 
factor), immunomodulation (reduction of microglial activation 
and inflammatory cytokines), antioxidative effects, delivery 
of mitochondria or mitochondrial rescue factors and, in 
certain contexts, direct differentiation or fusion with host 
retinal neurons (83,84). Over the past decade, attention has 
also shifted to cell‑free therapies based on stem cell‑derived 
extracellular vesicles (EVs; including exosomes), which 
recapitulate several paracrine benefits whilst reducing risks 
associated with live‑cell transplantation (immune rejection 
and ectopic growth) (85).

Multiple preclinical studies have reported efficacy in 
models relevant to glaucoma (84‑86). In optic nerve crush 
models, intravitreal or periocular delivery of human Wharton's 
jelly MSCs enhanced long‑term RGC survival, promoted 
axonal regeneration and, in a report, enabled partial reconnec‑
tion to central visual targets up to 120 days post‑injury (86). 
These experiments used quantitative histology, anterograde 
axon tracing to assess regeneration and functional readouts 
such as visually evoked potentials. In ocular hypertension 
models, intravitreal injection of MSC‑derived EVs reduced 
RGC apoptosis, decreased glial reactivity and preserved inner 
retinal structure and function on electroretinogram/visu‑
ally evoked potential testing (84,85). Notably, studies have 
identified miRNA cargoes (such as miR‑21 and miR‑146a) 
and protein factors within EVs that mediate antiapoptotic 
and anti‑inflammatory signaling, which can be validated by 
gain‑/loss‑of‑function experiments (84,85).

Efforts toward RGC replacement have advanced using 
human PSC technologies (87,88). Protocols now differentiate 
ESCs or iPSCs into RGC‑like neurons expressing canonical 
markers (such as brain‑specific homeobox 3A, RNA‑binding 
protein with multiple splicing and synuclein γ) and functional 
properties (such as spiking and synaptic proteins)  (87,88). 
Transplantation of iPSC‑RGCs into rodent retina results 
in survival and partial integration within the ganglion cell 
layer (87). Certain studies have reported axon extension toward 
the optic nerve head, but long‑distance and target‑specific 
reconnection to thalamic or collicular targets remains rare 
without additional pro‑regenerative manipulations  (87,88). 
Recent work emphasizes combinatorial strategies, such 
as pairing cell replacement with gene or pharmacological 
enhancement of intrinsic regenerative programs and modula‑
tion of the inhibitory extracellular environment, to improve 
integration and functional outcome (88).

Clinical translation is progressing cautiously. Several 
early‑phase clinical initiatives (such as the Stem Cell 
Ophthalmology Treatment Study, SCOTS/SCOTS2; clinical‑
trials.gov NCT03011541) have investigated autologous bone 
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marrow‑derived stem cells for optic nerve and retinal diseases, 
reporting safety signals (no surgical complications, no need 
for immunosuppression and no teratoma formation) but 
mixed efficacy outcomes and methodological heterogeneity. 
A systematic review and meta‑analysis indicated that stem 
cell therapies show promise in improving surrogate visual 
outcomes in optic neuropathies (89); however, high‑quality 
randomized data for glaucoma specifically remain lacking and 
long‑term safety requires continued vigilance (89).

Nevertheless, key technical and translational challenges 
persist, including the following: i) Cell survival and targeted 
delivery: The vitreous and inner retinal milieu can be hostile 
and cell engraftment rates are typically low; ii) immune and 
tumorigenic risks: Allogeneic cells may provoke immune 
responses and pluripotent cells carry teratoma risk unless 
rigorously purified; iii)  functional integration: Even when 
transplanted RGC‑like cells survive, forming correct synaptic 
connections with bipolar/amacrine cells and extending axons 
through the optic nerve to central targets is notably difficult 
in the adult mammalian central nervous system; and iv) stan‑
dardization and potency assays: Reproducible manufacturing, 
potency assays and release criteria for cell therapy products 
are still being refined (90). To address these, current preclin‑
ical trends focus on the following: i) EV‑based therapies as a 
safer, cell‑free approach; ii) biomaterial scaffolds and hydrogel 
matrices that improve cell retention and oriented axon growth; 
iii) combination approaches that include gene editing (such 
as CRISPR to modulate PTEN pathways), neurotrophic 
factor delivery and local immunomodulation; and iv) careful 
stepwise clinical translation with standardized endpoints, 
long‑term follow‑up and registries (84,88,90).

In summary, stem cell therapies provide compelling 
preclinical evidence for restoration of the TM and neuro‑
protection in glaucoma models and offer a plausible route 
toward regenerative strategies. Nevertheless, major biological 
and translational hurdles must be overcome before routine 
clinical application. Priorities for the field include rigorous 
mechanism‑of‑action studies, standardized manufacturing 
and potency assays, well‑designed early‑phase clinical trials 
with objective functional endpoints and the development of 
combination strategies to enable true structural and functional 
restoration of the TM and RGC pathway (91).

Use of specific molecular mechanisms. Once damaged, 
RGCs are unable to regenerate or reconnect to the visual 
pathway (6,24). Therefore, preventing their death is a critical 
strategy for preserving vision in patients with glaucoma (5,6,24). 
To achieve this, the disease process can be intervened through 
certain molecular mechanisms (5,6,24,92‑97).

Inhibiting ferroptosis (including using iron chelators such 
as deferiprone and deferoxamine, lipid ROS scavengers such 
as ferrostatin‑1 and endogenous iron‑regulating proteins such 
as transferrin) (24), blocking pyroptosis (including applying 
caspase‑1 inhibitors such as fluoromethyl ketone and NLR 
family pyrin domain containing 3 inhibitors such as baicalin 
extract) (24) and modulating inflammatory responses can help 
to slow down RGC damage (6).

In addition, a variety of molecules have shown potential 
in glaucoma treatment. Insulin has been reported to stimu‑
late the regeneration of RGC dendrites and synapses during 

ocular hypertension (92). However, glucocorticoid treatment, 
which is commonly associated with increased IOP, involves 
the activation of glucocorticoid receptors (93). Therefore, 
blocking these ocular receptors may represent a potential 
strategy to prevent IOP elevation. Additionally, given that 
glaucoma involves both histaminergic and nitrergic systems, 
combining a histamine H3 receptor antagonist with a nitric 
oxide donor could offer an effective approach to managing 
IOP (94). Furthermore, NAD+ depletion serves a marked role 
in several neurodegenerative diseases, including glaucoma. 
Oral niacinamide treatment has demonstrated the ability 
to improve visual outcomes in patients with glaucoma, 
suggesting its potential as a therapeutic option  (95). In a 
preclinical study, stable gastric pentadecapeptide body 
protection compound 157 therapy has been reported to alle‑
viate signs and symptoms of glaucoma in rat models (96). 
Another promising avenue involves the activation of σ‑1 
receptors, as their low expression is associated with RGC 
degeneration (97).

Moreover, neuroprotection serves an important role in 
glaucoma treatment. Several growth factors (such as ciliary 
neurotrophic factor, nerve growth factor and brain‑derived 
growth factor) have notable neuroprotective effects and 
can protect and repair RGCs  (6). In addition, metabolic 
abnormalities have been reported to be involved in the 
pathogenesis of glaucoma, particularly in the occurrence and 
development of RGC damage (6). Therefore, intervening in 
the progression of glaucoma through metabolic regulation is 
of great significance. For example, metformin, insulin and 
glucagon‑like peptide‑1 receptor agonists are not only effec‑
tive for type 2 diabetes but also show potential therapeutic 
value for glaucoma (6). Taken together, these findings suggest 
that targeting several molecular pathways could pave the way 
for more effective therapies.

Nanomedicine. Nanomedicine, the application of nanoscale 
drug carriers and delivery platforms, improves the ocular 
penetration of traditional eye drops, provides sustained and 
controlled release, enables targeted delivery to anterior‑ or 
posterior‑segment structures and supports co‑delivery of 
multi‑modal payloads (such as IOP‑lowering agents plus 
neuroprotectants) (98). Nanomedicine represents promising 
avenues for glaucoma management, spanning IOP control, 
neuroprotection and combination approaches that may reduce 
dosing burden and enhance disease modification in the 
future (99,100).

Common nanocarrier classes for glaucoma include 
liposomes, solid lipid nanoparticles (SLNs) and nano‑
structured lipid carriers, polymeric nanoparticles [such 
as poly(lactic‑co‑glycolic acid) (PLGA)], nanoemulsions, 
niosomes, dendrimers and hybrid/hydrogel embedded nanopar‑
ticle systems (98,100). Lipid‑based systems are particularly 
attractive for lipophilic prostaglandin analogs; preclinical 
work has reported that latanoprost or bimatoprost loaded into 
liposomes or SLNs can markedly extend ocular residence and 
prolong IOP lowering after a single administration compared 
with eye drops (101). For example, Satyanarayana et al (101) 
developed bimatoprost‑loaded SLNs that provide extended 
in vivo release and tolerability in rabbits, supporting the poten‑
tial to reduce dosing frequency.
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For hydrophilic drugs (such as timolol), mucoadhesive 
gelatin or polymeric nanoparticles embedded in viscous vehi‑
cles have been reported to improve corneal retention and sustain 
delivery, translating into longer pharmacodynamic effects in 
preclinical studies (98,102). Polymeric PLGA nanoparticles 
have been used to encapsulate neuroprotective small molecules 
(such as memantine) to enhance posterior‑segment delivery 
and RGC protection in experimental glaucoma models (103). 
Niosomes and proniosomal gels have been explored to sustain 
the release of brimonidine, increasing ocular residence and 
potentially enhancing its documented neuroprotective actions 
independent of IOP lowering (104). Furthermore, nanoemul‑
sions and contact‑lens/insert reservoirs represent alternative 
platforms to achieve prolonged release whilst maintaining 
patient comfort and compliance (98,100).

Beyond single‑agent delivery, nanocarriers enable combi‑
nation strategies: Co‑encapsulation of an IOP‑lowering 
drug with an anti‑inflammatory or antioxidant payload can 
concurrently reduce pressure and modulate pathogenic micro‑
environments that contribute to RGC loss. Nanocarriers can 
also be surface‑modified (PEGylation, targeting ligands and 
mucoadhesive coatings) to tune corneal uptake, reduce clear‑
ance and direct payloads toward TM, ciliary body or posterior 
tissues when needed (98,100).

However, despite promising preclinical data, several trans‑
lational barriers remain. Safety concerns include local ocular 
irritation, inflammation, corneal toxicity and the long‑term fate 
of non‑biodegradable nanomaterials. Manufacturing at GMP 
scale with batch‑to‑batch consistency, stability during storage, 
sterilization without compromising carrier integrity and 
regulatory pathways for combination products (device + drug) 
are non‑trivial hurdles (98,100). Immunogenicity of certain 
surface chemistries and the potential for ocular accumula‑
tion with repeated dosing require long‑term biocompatibility 
studies. Moreover, economic and commercial considerations 
(such as cost of goods, patient acceptance and delivery form 
factors) also influence which nanoplatforms progress to 
clinical trials (98,99).

4. Conclusions and future directions

In conclusion, conventional glaucoma treatment methods 
have limitations in efficacy and struggle to meet clinical 
needs. Therefore, future treatment directions should focus on 
emerging technologies such as gene therapy, gene editing, stem 
cell therapy and molecular targeted therapy. These methods 
offer new possibilities for glaucoma treatment by precisely 
intervening in disease mechanisms.

Although current gene therapies are unable to reverse 
vision loss caused by RGC death, they can effectively delay 
or even halt disease progression, thereby preventing further 
visual impairment. If applied in the early stages of the 
disease, such treatments may also completely avoid notable 
vision loss and achieve improved prognostic outcomes. 
However, these cutting‑edge therapies are still in the devel‑
opmental stage, and their clinical translation faces certain 
challenges. Although certain gene‑editing‑based clinical 
trials (such as NCT04560790, NCT01949324, NCT02862938, 
NCT04577300 and NCT03872479) (105) are ongoing or have 
been completed, most therapeutic strategies remain in the 

preclinical research phase and have not yet been widely applied 
in clinical practice. Therefore, further efforts are needed to 
strengthen basic research and clinical trials to validate the 
safety and efficacy of these therapies, facilitating their earlier 
entry into clinical application.

Several genes have been associated with POAG, 
highlighting the complex and diverse genetic basis of 
glaucoma (106). However, the specific functions of several 
of these genes and their roles in the disease mechanism 
remain incompletely understood, indicating that numerous 
potential molecular targets still await further investigation. 
Future research may not only uncover additional gene targets 
associated with glaucoma but also offer new approaches and 
strategies for molecular therapy.

Notably, glaucoma may share certain pathophysiological 
mechanisms with other neurodegenerative diseases, such 
as Alzheimer's disease and Parkinson's disease  (107,108). 
These shared mechanisms include apoptosis, ferroptosis, 
pyroptosis, mitochondrial dysfunction, oxidative stress and 
inflammation (107,108). These common mechanisms suggest 
that glaucoma may have similar neuroprotective and neurore‑
generative requirements as these diseases. Therefore, effective 
therapeutic approaches for neurodegenerative diseases may 
also be applicable to the treatment of glaucoma. Exploring 
these shared mechanisms may uncover new treatment strate‑
gies for glaucoma and foster interdisciplinary research.
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